التفسير النظري والبيورولوجي للتدوير العقلي

إعداد
مصعع شاكر عز الدين محمد
آخصائي نفسي بالتدريب والتعليم
طالب ماجستير

أغسطس - ديسمبر 2016
المقدمة:

أولاً: التفسير النظري للتدوير العقلي يرتبط التدوير العقلي إلى حد كبير بمجموعة من العوامل أهمها الخبرة، والجنس، وتدريب، الموهبة، والتطور المعرفي. لذلك سعت مجموعة من النظريات إلى تفسير عملية التدوير العقلي ومن هذه النظريات ما يلي:
Response - Preparation Theory:

Flip Theory:

ارتباط مع التدوير العقلي (تدريبياً)، وخاصة في الشقو الجداري الداخلي، والمناطق القلبية حركية العلاقي، Interparietal Sulcus Higher order Premotor Area (deLange, Hagoor & Toni, 2005; Kehner, Guerin, Miller, Turk & Hegarty, 2006; Mourao, Miranda, Ecker, Sato, & Brammer, 2009; Vingerhoets, deLange, Van demaele, Deblaere & Achten, 2002).

Confirmation Theory

- نظرية التأكيد:

لقد أجري كل من (1976) Just and Carpenter فحوصاً وصفياً لمسار التدريب الخاص بالمشاركين أثناء التدوير العقلي لأشكال تشخيص، ومتزامن الثلاثة الأبعاد. فلاجروا أن كمون الاستجابة المرتفع خاصة في حالة المثيرات المرآوية تمثل في طول المدة في مرحلة التأكيد، وهي تمثل الخطوة الثالثة في نموذج المعالجة، فالخطوة الأولى (البحث)، والثانية (Mis Fit، التحليل والمقارنة)، والثالثة (تأكيدي التطبيق، أو عدم التطبيق، بين المثيرات، وهكذا نجد أن معظم الإعدادات تشير إلي المرحلة الرابعة (الحكم بالتكافؤ، Judgment of Parity). من نموذج المعالجة عند كل من Cooper and Shepard (1973) and Corballis (1988)، مع عناصر المرحلة الثالثة (التدوير العقلي للشكل ككل أو أجزاء الشكل) والمرحلة الثانية (تحديد توجه الشكل). ولقد لوحظ أثناء تطبيق هذه النظرية وجود زيادة في النشاط حدثت أثناء حل المهمة المتمثلة في مقارنة المثيرات المرآوية بالمثيرات المتتابعة، ومن المتوقع بشكل أساسي حدوث هذا النشاط في القشرة القبل الجبهية،Prefrontal Cortices، والشوق الجداري الخلفية، و Posterior Parietal Cortices، وذلك من حيث الاستدلال المنطقي، المرتبط بهذه المناطق، أيضاً في المناطق التي تشارك في التحويلات المكانية (Fangmeier, Knauff, Ruff, & Sloutsky, 2006).
Dual Coding Theory:

- نظرية الترميز الثنائي:

Image Theory:

- نظرية الصورة:

 أشار (Kosslyn) إلى وجود أجزاء في الدماغ مسئولة عن التصور، الأجزاء المرئية وتكون الصور العقلية وتنتمي هذه الصور إلى نسخة أو بقايا أنماط حسية وأحاسيس مرئية كانت فيما مضى تشبه الصورة، ويؤكد أن أشياء الصور أو التصورات السطحية يتم تكوينها بناء على معلومات من التصورات العميقة التي تتشكل في الجزء العلوي من الدماغ، لذا أن عملية التدبير العقلي تحصل نتيجة لوجود بيانات مخزنة عن الصورة في الذاكرة طويلة المدى على شكل صور في: شادية أحمد التل.

- نظرية النشاط الإدراكي:

 يؤكد كل من (Neisser and Borg) أن الصور المائلة للعينان تعتبر ذات طبيعة فراغية، والدماغ يعمل فقط على التفطير المعلومات الثابتة من البيئة بما يتناسب مع ما يتوقع الفرد رؤيته في سياق معين، حيث أن تدفق المعلومات إلى الدماغ بصورة مستمرة وصحيحة من البيئة المحيطة تمكن الفرد من القيام بعملية تدبير صحيحة للشكلا في: شادية أحمد التل.

وليد حامد الشقور 2015.

- نظرية النشاط الإدراكي:

 يؤكد كل من (Neisser and Borg) أن الصور المائلة للعينان تعتبر ذات طبيعة فراغية، والدماغ يعمل فقط على التفطير المعلومات الثابتة من البيئة بما يتناسب مع ما يتوقع الفرد رؤيته في سياق معين، حيث أن تدفق المعلومات إلى الدماغ بصورة مستمرة وصحيحة من البيئة المحيطة تمكن الفرد من القيام بعملية تدبير صحيحة للشكلا في: شادية أحمد التل.

وليد حامد الشقور 2015.
النظرية الوصفية:

نظرية المنظومة:
Kosslyn, Schwartz and Pinker ووضع هذه النظرية كل مسن وتفترض هذه النظرية وجود أنماط مختلفة من التمثيل في الذاكرة البصرية Long-term Memory، والذاكرة طويلة المدى، Active Visual Memory، و هذه التمثيلات المتضمنة في الذاكرة النشطة تحتوي على خبرة التصور، والتي تتطلب الخصائص شبه التصورية التي يصفها الفرزغر، عندما يقوموا بالتصور من أجل تكوين الحدث من الخصائص البنائية. لهذا التمثيل المتضمن، فنلاحظ أن التنظيم يبدو على هيئة حببات ما، يجعل الصور الأصغر أكثر صعوبة في فحصها وتحديد حجمها وشكلها، كذلك صعوبة تخيل و استدعاء خلفية الأشياء، وكذلك الإطار الخارجي في الدماغ (Kosslyn, Pinker, Smith, & Schwartz, 1979).

نظرية التكامل الوظيفي:

العدد الرابع والعشرون والخمس والعشرون- ٤٤٢ - أكتوبر- ديسمبر ٢٠١٦
أثناء التحويلات العقلية، وكيفية تفاعل هذه القدرات لإتمام التحويل (في:
رجب محمود أبو علام، عاصم عبد الحميد كامل، محمد عاطف عطيفي،
2014).

Shape Recognition Theories: نظريات تميز الشكل

(1984) أوضح، Pinker، أن نظريات تميز الشكل تتنقسم إلى
ثلاثة أنواع هي:

1- نماذج وجهات النظر المستقلة:
وفيها يتعتبر الشيء نفسه التمثيلات بصرف النظر عن حجمه، وتوجهها،
وموقعها، وهذا النوع يتضمن ملامح النماذج، حيث يتم تمثيل الأشكال
كمجموعة من الملامح المستقلة مثلاً: التقاطعات، Intersections
والزوايا، Curves، والمنحنيات، Angles، ونماذج وصف، Structural- description models
الهيكل، حيث يتم تمثيل الأشكال
العلاقات المكانية، Hierarchical description

2- نماذج أحادية الوجه بالإضافة للتحويل:
Transformation

Single-view-plus-

حيث يتم تمثيل الشكل من خلال رؤية واحدة أو توجه واحد
وفي الغالب يتم تحديده من خلال رؤية نظر المشاهد "التمثيل
المتمركز- على المشاهد"، و يتم التمييز في هذه النماذج عن طريق عمليات

Marr & Nishihara, 1978

Elongation or Symmetry

الشريحة "مواصلة وصف الشكل المخزن والذي يستخدم نفس النظام الإضافي

أUGUST-2016-443-512-DEC
التحويل، وذلك من أجل تحويل التمثيلات المدخلة للشكل في التوجه الحالي إلى التوجه المطلوب الذي تم تخزينه من تمثيلات الذاكرة. يتعين أن يتم تحويل تتمثيلات الذاكرة في اتجاه مدخلات الشكل (Tarr & Pinker, 1989).

Multiple-view models:

يتم فيها تمثيل الشكل في ضوء مجموعة من التمثيلات، كل منها تم تنفيذه في اتجاه مختلف مألوف، وبعد ذلك يتم تمييز الشكل إذا كان يتطابق مع أي منها (Tarr & Pinker, 1989).

ثانياً: التفسير النيولوجي للتدوير العقلي.

ظهر اهتمام كبير بدراسة التدوير العقلي من أجل معرفة الميزات العصبية الكاملة وراء أداء المهمة، وعلى الرغم من وجود عدد كبير من الدراسات استخدمت نماذج التدوير العقلي (Cooper, 1975; Shepard & Metzler, 1971) وذلك لمعرفة التغييرات البيولوجية ذات الصلة بالعمليات المعبرة الأساسية، وملاحظة بيانات زمن الرجوع (Childs, & Polich, 1979; Kail, 1985; Lohman, 1986). رغم ذلك أوضحت الدراسات العصبية النفسية أن أماكن تأثيرات التدوير العقلي مازالت غير واضحة. فهناك بعض الأدلة تشير إلى النصف الأمامي من الدماغ أثناء معالجة التدوير العقلي. فقد أوضحت العديد من الدراسات أن الأفراد الذين يعانون من تلف حقيقي في النصف الأيمن من الدماغ، يواجهون صعوبة في التدوير. وعندما طلب منهم تدوير بعض من صور المائدة أو مناظر طبيعية ثلاثية الأبعاد لوحظ أن الأفراد ذوو التلف في النصف الأيمن من الدماغ (RH)، أدوا بشكل أفضل عن الأفراد الذين يعانون من تلف في النصف الأيسر من الدماغ (LH) (Butters & Barton, 1970; Kim, 1979; Morrow, Passafiume & Boller, 1984; Ratcliff, 1979).

أشارت العديد من الدراسات أن الأفراد المصابين بتفاق استخدموا

وجدت العديد من الأدلة التي توضح أهمية النصف الأيمن من الدماغ في معالجة التدوير العقلي. فقد لوحظ أن الأفراد المصابين بقطع بالجسم الجاسي، Corpus Callosum، لديهم فاعلية أكبر في النصف الأيمن من الدماغ أثناء معالجة التدوير العقلي وهو نفس ما انتهت إليه دراسات (Roberts, & Bell, Hermann, 2002; Zacks, Gilliam, & Ojemann, 2003).

) (1978) هذه النتائج حيث أنتهت إلى تفوق الأفراد ذوي اليد اليسرى في تقديم استجابات أسرع على مهام التدوير العقلي مقارنة بالأيامين، وكذلك نتائج Deutsch (1988)، كانت مشابهة فقد لوحظت زيادة في نشاط النصف الأيمن من الدماغ، زيادة تدفق الدم إلى مقارنة بالنصف الأيسر أثناء أداء المفاهيم بمهام التدوير العقلي "الشيفر" و"المتزاح" وذلك وفقا لمسح المخ (in: Cohen, Kosslyn, Breiter, Digirolamo, Thompson, Anderson, Bookheimer, Rosen, &...)

العدد الرابع والعشرون والخامس والعشرون - 45 - 2016

أغسطس - ديسمبر
وتؤكد العديد من الدراسات على الهيمنة المسبقة (Belliveau, 1996). وخاصة بالتصنيف الجسمي والجذري، وโดمنيات (Vingerhoets, Santens, Van Laere, Dierckx, & DeReuck, 2001). إلى سيادة نشاط النصف الجذري الأيمن بشكل رئيسي، ويتضح هذا الأمر وفقاً لمنشور التخصص الوريقي لتصنيف المخ; كما خلصت الدراسة أيضاً إلى تخصص النصف الأيسر في معالجة ما هو لفظي أو للغوي، أما النصف الأيمن فإنه يعالج ما هو غير لفظي، وبالتالي فإنهم مهمّة التدوير العقلي تعد مؤشراً لكفاءة المعالجة بالنصف الأيمن، كأي أنه انتهت احدي الدراسات الحديثة إلى اختلف نمط النشاط اللفقي، وذلك أثناء تقديم مثيرات علي شكل أيدي، وأدوات تمثل مهام للتدوير العقلي، وتتم البث بنتائج تدريب المخ في هذه المعالجة في مشارقة أقل ممن (Seurinck, Vingerhoets, Vandemaene, & Deblaere & Achten, 2005). العصبي إلى وجود نشاط أولي في القشرة الجدارية بالإضافة إلى نشاط مشاركة في المنطقة القشرة حركية (Premotor Area) أثناء أداء التدوير العقلي (Chan, Ho, & Cheung, 1998; Richter, Somorjai, Summers, Jarmasz, Menon & Gati, 2000; Thomsen, Hugdahl, Erslund, Barndon, Lundervold, & Snievoll, 2000). أوضح أيضاً، باستخدام (EEG) (Inoue et al. 1998)، أنه يوجد نشاط في المناطق القشرة حركية اليسري، ومناطق أخرى في القشرة الجهوية من مركّبة (20), وفي ضوء النتائج التي اعتمدت على الحدث المرتبط بالفعل، ظهر نشاط سلبي واضح في المنطقة الجهوية المركزية اليمنى.
الكفاءة الفسيولوجية في التدريب العقلي

ورWiFi إضافة لذلك، فـأنا مسألة (Petsche, Feldmann & Rescher 2001). عدم النمط الدموي أثناء التدريب العقلي يتطلب الكثير من الاهتمام فـأنا أشرت أولًا بدراسة التصوير العصبي إلى هيئة النصف الأيمن من الدماغ (Deutsch, Bourbon, Papanicolaou & Eisenberg, 1998) وهي حييني كأوضح (Cohen et al., 1996)، أنه لا يوجد فروق واضحة تم الحصول عليها في الدراسات السابقة، لذلك يفترض أن هذه النتائج المختلفة تشير إلى أن التدريب العقلي مثل أي وظيفة معرفية معقدة تتشكل بواسطة مجموعة من العمليات المعرفية الفرعية والتي تعمل بشكل متزامن، هذه العمليات الفرعية هي التي تتحملها الاختلاف في المناطق القشرية كما أشار (1995) أن تميز الشيء البصري يفترض أنه يتم في المقام الأول بواسطة المناطق الصغيرة، والمنطقة، والتي وجدت بها خلايا تستجيب للشيء بطريقة وجهة النظر الانتقائية كما أوضح (Gauthier et al., 2002)، قياس النشاط الدموي أثناء التدريب العقلي وتميز الشيء بواسطة أشياء دارت حول ثلاث محاور مختلفة، أظهر تزايد النشاط في الفص الجداري الأمامي (SPL) بشكل يناسب مع التباث في وجهات النظر أثناء التدريب العقلي. ولم يحدث ذلك في حالة تميز الشيء.

وقد تناولت الأبحاث الأساسية الفيزيولوجية الفسيولوجية للأداء على مهام التدريب العقلي من داخل وعوامل توجها فما يلي:

1- مناطق النشاط الفيزيولوجي بالقرص المخية.

يتمثل الجانب الأكثر أهمية في إتباع مدخل عصبي علمي في مثل هذه الدراسات. حيث يتم دراسة تأثيرات التدريب على التدوير العقلي من خلال القياسات العلمية العصبية الخاصة بنشاط الدماغ أثناء الأداء على مهام التدريب العقلي. فقد أوضحت عمليات المسح الخاصة بأشعة البوزيترون (PET) قبل وبعد التدريب انخفض معدل Positron Emission Tomography

أUGUST - DECEMBER 2016

444
المصطفى النظري والثيوئولوجي للفكر الشعبي

الانخفاض في معدلات النشاط المتزامنة على التدريب بتبليغ مستوى أداء المشاركات (كلما ارتفع مستوى الأداء انخفض مستوى التنشيط)، وكذلك مستوى الذكاء العام الخاص بهم (كلما ارتفع مستوى الذكاء انخفض مستوى التنشيط، بعد التدريب) (Haier, Siegel, Tang, Able & Buchsbaum, 1992).

كما وجدت نتائج مشابهة في ظل إتباع التصميم التجريب ذات المجموعة الواحدة (الاختبار القلبي، التدريب، الاختبار البعدي) (Neubauer, Grabner, Freudenthaler, Posttest، فقد توصل Beckmann & Guthke, 2004) إلى انخفاض معدلات التنشيط بالنسبة للأفراد الأكثر ذكاءً فيما بين الاختبارين القلبي والبعدي وكان ذلك في الاختبار البعدي، لاسيما في أحيى أجزاء الدماغ التي ترتبط بعملية التفكير بقوة (القشرة القبل الجبهية، القشرة القبل الجبهية، الشبكة الجبهية الجدارية، الشبكة الجبهية الجدارية، Jaušovec). كما أن الفرق أيضاً (Jung & Haier, 2007).

(2012) أن التدريب لمدة (18) ساعة أدى إلى الانخفاض في نشاط القشرة الجبهية، وتزايد مع هذا الانخفاض زيادة في نشاط القشرة الجدارية لدى الإناث في الاختبار البعدي مقارنة بالاختبار القلبي، ولم يلاحظ أي تحسن في أداء المجموعة الضامنة وارتبط ذلك بعدم وجود فروق في نشاط المناطق الدماغية بين الاختبارين القلبي والبعدي للمجموعة الضامنة.

كما أوضحت إحدى الدراسات التي استخدمت ثلاثة أنواع من اختيارات التدوير العقلية في الدراسة، أنها حصلت على صور هيكلية وظيفية للبنات.

العدد الرابع والعشرون والخامس والعشرون - 48 - 8

أغسطس - ديسمبر 2016
المراحل قليلة وبعد الممارسة على حل المشاكل البصرية – المكانية، وألعاب الفيديو، والتدرس. وبعد (2) أشهراً من الممارسة تم مقارنة نتائج الفحص الهيكلي للمجموعة الضابطة مع المجموعة التي مارست ألعاب التدرس (بفريز)، فأخذت المجموعة الضابطة نشاطاً قشرياً تتمثل في منطقتين:

- Left Superior Frontal Gyrus
- Left Anterior Superior
- والتفصيل الجبهي العليا الإسمر
- والتفصيل الصدغي العليا الأمامي الإسمر
- وذلك اعتماداً على النشاط المسجل بواسطة السرنيين Temporal Gyrus المغناطيسي الوظيفي (FMRI)، وفي المقابل أظهرت المجموعة التي مارست التدرس "شدة قشرية في جميع مناطق الدماغ واتسم النشاط بالانخفاض بشكل واضح في معظم المناطق الجبهية بعد الممارسة".(Haier, Karam, Leyba, & Jung, 2009)

2- الفروق النوعية أثناء أداء التدريبي العقلي.

و في ضوء الدراسات العلمية العصبية الخاصة بنشاط المخ في ظل الفروق النوعية بين الذكور و الإناث على مهام التدريبي العقلي. اهتمت الدراسات بالفروق الجنسية بين الذكور و الإناث فيما يتعلق بشكل المخ من حيث ارتباطه بنصي الأداء على مهام التدريبي العقلي (Koschik et al., 2009).

تم أظهرت النتائج وجود مادة رمادية في الفص Gray Matter (GM) لذكور، وقد عُرفت الدراسة بدرجة أكبر من الذكور، وهذا يعتبر بمثابة قصور بالنسبة للذكور، بينما وجدت سلاسة سطحية جدارية أكبر بالنسبة للذكور؛ تعتبر بمثابة ميزة خاصة بمستوى الأداء بالنسبة للذكور. وفقاً لاختبار التدريبي العقلي. وفي هذا الصدد؛ توصل الباحثون إلى أن الفروق الجنسية الهيكليَّة قد تكون بمثابة العامل العصبي البيولوجي الفعال المؤدي لاختلافات الجنسية بالنسبة لمستوى الأداء على مهام التدريبي العقلي. كما أشارت العديد من دراسات الرنين المغناطيسي الوظيفي (FMRI) إلى وجود فروق جوهيرة.

المقدمة (الدورة والعشرون والخامس والعشرون - 449 -

أUGUST - DECEMBER 2012

Page 449

2012
التكسير النظرى والنتيئولوجي للتدوير العقلي

مصعب شاكر عز الدين محمد

خاصة في نشاط المناطق الدماغية بين الذكور والإناث المشاركين في مهام التدوير العقلي؛ على الرغم من عدم وجود فروق خاصة بمستوي الأداء (Butler et al., 2006; Hugdahl et al., 2006; Jordan, Wüstenberg, و من ناحية أخرى، أشارت إحدى Heinze, Peters & Jäncke, 2002).

الدراسات إلى وجود فروق بين الذكور والإناث في الأداء على مهام التدوير العقلي في ظل النشاط الجانبي للدماغ Bilateral Activations ؛ فقدت أظهرت الإناث نشاطاً واضحاً بالشق الجداري الداخلي Intra Parietal

Superior and Sulcus (IPS) و الفصيص الجداري العلوي والخلفي و التلفيف الصدغي الخلفي Inferior Parietal Lobule وталفةة الذكور، Premotor Area، Gyrus (ITG) Sulcus

أظهر الذكور نشاطاً واضحاً في الشق الجداري - القفوي الأيمن والشق الجداري الداخلي اليسري (IPS) ، و الفصيص Right Parieto-Occipital والشجي العالي الأيسر Left Superior Parietal Lobule (LSPL) ، كما اتفقت كل من الذكور والإناث في نشاط المناطق القبل حركية ؛ بالإضافة لذلك أظهر الذكور أيضاً نشاطاً واضحاً في القشرة الحركية اليسرى (Jordan, et al., 2002) . ولم يظهر ذلك في التلفيف الصدغي الخلفي Cortex (ITG) ، ولم يظهر ذلك في التلفيف الصدغي الخلفي (ITG)

كما ظهر أنماط مختلفة من النشاط القبلي ارتبطت بمستوي الأداء أكثر من النوع أثناء الأداء على المهام البصرية المكانية وتدوير العقلي (Tagairs, Kim, Strupp, Andersen, Uguribil, & Georgopoulos, 1996; Unterrainer, Wranek, Staffen, Gruber & Thomsen et al.) في المقابل ؛ أوضح (2000). أن الذكور في الغالب أظهروا نشاطاً جديراً في حين أظهرت الإناث نشاطاً في كما اهتمت العديد من الدراسات بتحديد الفروق النوعية بين الذكور والإناث على مهام التدوير

أغسطس - ديسمبر 2012
العقللي في ضوء الفرق بين حجم المادة الرمادية (GM) ، والمادة البيضاء (WM) في المناطق الدماغية ؛ فأظهرت النتائج وجود فروق في نسب الأنسجة بين الجنسين ، فقد أظهرت الإثاث مادة رمادية أكبر من المادة البيضاء مقارنة بالذكور ، (Goldstein, Eidman, Horton, Makris, Kennedy, & Cavinnes, 2001; Gur et al., 1999; Luders, Narr, Thompson, Woods, Rex, & Jancke, Steinmetz, & Toga, 2005). وفي إحدي دراسات الرنين المغناطيسي الوظيفي (FMRI) ، أدي (12) من المشاركين الذكور ، (21) من الإناث المتطوعين في مرحلة عمرية صغيرة على نوعين من الاختبارات ؛ اختبار التدوير العقلي ، اختبار توليد الفعل ، Verb-Generation Tests ؛ فأظهرت النتائج فروقاً واضحة في النشاط الدماغي في كل من الاختبارين بين الذكور والإناث ، فقد لوحظ نشاط Right Medial Frontal مرتفع لدى الذكور في الفص الجبهي الأوسط الأيمن ، و القشرة الجدارية الخلفية الجانبية Precentral ، و القشرة القبل مركزية Bilateral Inferior Parietal Cortex أثناء الأداء على اختبارات التدوير العقلي وفي المقابل ؛ أظهرت الإثاث نشاطاً في المناطق الصدغية الوسطى و الخلفية اليمنى للعليا اليمنى ، والتفليي المغزلي الأيسر ، في حين أظهر الذكور في حالة "اختبارات توليد الفعل " نشاطاً مرتفعاً في المناطق الصدغية اليسرى ، و القشرة القبل مركزية ، (Gizewski, Left Fusiform Gyrus Left Medial Temporal و الفروق في النشاط الدماغي بين الذكور والإناث في هذه المرحلة من العمر في حالة المهام المعروفة في حين أن الفروق بين الجنسين تشكلت في مهمة التدوير العقلي بشكل أكثر وضوحاً من مهمة توليد الفعل ، Krause, Wanke, Forsting & Senf, 2006)
التطبيق المتبسط في أشكال التدريب العقلي

لقد دُعمت فرضية "فاعلية الجهاز العصبي" من خلال ما يزيد عن (30) دراسة استخدمت المناهج الفسيولوجية العصبية المختلفة مثل: PET، EEG، FMRI، في ظل مجموعة واسعة النطاق من المهام الإدراكية (بدءًا من الإدراك الأولوي وانتهاءً بمتطابقات التفكير المعقد)، (Neubauer & Fink, 2009). كما ظهرت معظم الأبحاث المعنية بالعلاقات الارتباطية العصبية العلمية الخاصة بالتدريب البصري المكاني من خلال المداخل العصبية العلمية الخاصة بمستوي الأداء الرياضي ومهارة النطق على الأجزاء الجدارية لتصنيف الدماغ والتي تم إدراجها في إطار (Cabeza & Nyberg, 2000; Trojano, المهارات البصرية - المكاني، بالإضافة ل (Linden, Formisano, Goebel, Sack & Di Salle, 2004).

للاهتمام بالعلاقات العصبية الخاصة بالمهارات البصرية - المكاني، ظهر أيضًا اهتمام أكثر تخصصًا بالقدرات المعرفية، فقد حسبت العديد من الدراسات في العلاقات العصبية الخاصة بالتدريب العقلي الثلاثي الأولوي وقابل (Kawamichi et al., 2007;). فلقد أظهرت مساحة كبيرة من التدريب ثلاثي الأولوي لأشياء ثلاثية الأبعاد، (Kawamichi, Kikuchi & Ueno, 2007).

النشاط في الفصص الجداري العلوي الأيمن (RSPL)، ارتبطت بزاوية التدريب الثلاثي الأولوي، وفي المقابل ظهرت مساحة كبيرة من النشاط في القشرة الدفلي حركة الظهارية اليمني، Cortex، ارتبطت بزاوية التدريب الثلاثية الأبعاد، بالإضافة لذلك ارتبط أيضاً النشاط الحادث في القشرة القبل حركة الظهارية اليمني بالترصي البصري للأشياء المختلفة، Hidden Parts، الذي يتطلب تدريبًا ثلاثيتياً فقط، (Kawamichi et al., 2007)

(Robets & Bell, 2003).
الجارية البارزة (PC)، فأظهرت النتائج أن الذكور أظهراً أشداً أكبر في القشرة الجدارية البارزة اليمنى، وذلك في حالة المهام ذاتية الأبعاد البسيطة، في حين أن الإناث أظهرت أشداً أكبر في القشرة الجدارية اليمنى عن القشرة الجدارية البارزة، وفي المقابل، أظهر كل من الذكور والإناث أشداً أكبر في القشرة الجدارية البارزة عن القشرة الجدارية البارزة، وذلك في حالة المهام الثلاثية الأبعاد المعقدة. كما أن دراسات (Lamm et al., 2001; Richter et al., (FMRI al., 2000; Tagaris et al., 1997; Windischberger et al., 2003).)

نشأ في المناطق الحركية العليا للذكور (Cohen et al., 1996; Gauthier et al., 2002; Jordan et al., 2001) إلى اختلاف مستوى التنشيط في المخ عند الذكور في حالة العرضين الثلاثي والثالثي الأبعاد، في حين أظهرت الإناث اختلافاً في مستوى التنشيط في حالة العرض الثلاثي الأبعاد فقط، ولم يحدث ذلك في حالة العرض الثلاثي الأبعاد لمهما التدوير العقلي. كذلك تم مقارنة الفاعلية الطيفية لل EEG (من خلال أربع نطاقات للتردد (8-13 هرتز)، على عينة مكونة من (20) طالب مارسوا عدد من المهام التي تتطلب تدويرًا عقلياً للأشياء الثنائية والثالثية الأبعاد. فأظهرت النتائج أن فاعلية التردد الخاصة بمستوي أداء المهمة في حالة الأشياء الثنائية الأبعاد كانت أكبر من تلك الخاصة بالأشياء ثنائية الأبعاد حيث أن زاوية التدوير كانت أكبر في حالة الأشياء ثنائية الأبعاد وبالتالي أدت هذا الحامل - وليس عمق المسافة المدارة - إلى زيادة مستوى النشاط في المناطق الدماغية (Nikolaev & Anokhin, 1998).

-4 زاوية التدوير العقلي.

العدد الرابع والعشرون والسادس والعشرون - 47 -

أUGUST - DECEMBER 2016
لقد وجدت علاقة خطية بين زيادة نشاط الحادث في المناطق الدماغية وزيادة صعوبة المهمة وتمتثل صعوبة المهمة في زيادة درجة استدارة الشكل IPS (IPS) مما أدى إلى نشاط ثنائي الجانب قوي في الشق الجداري الداخلي والفصيص الجداري العلوي والخلفي Superior and Inferior Parietal Lobule, (Podzebenko et al., 2002). كما قام Carpenter et al., بفحص أثر زاوية التدوير (1999).

علي نشاط الدماغ في ظل استخدام أشكال الثلاثية الأبعاد ولم يستخدموا الأحرف الأبجديه. فأظهرت النتائج نشاطاً واضحاً في المناطق الجدارية وكذلك المناطق الصدغية والجهة ارتبط بزيادة زاوية التدوير، وأشار أيضاً إلى وجود علاقة خطية بين زيادة النشاط في القشرة الجدارية اليسرى واليمنى وزوايا التدوير الكبيرة. كما نلاحظ أيضاً زيادة في نشاط القشرة الجدارية العليا والسفلية اليمنى والقشرة الجدارية الخلفية اليسرى وذلك عند تتم الأحرف الأبجديه في كل الحالتين الحروف الطبيعية "الصور المصورة آوياة للحرف"، (Alvisatos & Petrides, 1997).

ولقد أظهرت النتائج أن زيادة تباين ألوان التدوير صاحبها زيادة سلبية في أشكال موجة الحدث المرتبطة بالفعل Event-Related Potential (ERP) في نطاق الكمون من (300-800 ميلي ثانية)، خاصة في المناطق الجدارية والقفرية، والتي مُسِرت على أنها تعبير عملية التدوير كما لوحظ أيضاً تأثيرات منظمة في المناطق المركزية، (Desrocher, Simth & Taylor, 1995; Rosier, Heil, Bajric, Pauls & Henninghausen, 1995)، وكذلك في المناطق القلوية ولكن التأثيرات في المناطق الجدارية كانت أكثر وضوحاً، (Peronnet & Farah, 1989).

جديدة مرتبطة بمقارنة المثيرات التي تم تدويرها بالمثير الرئيسي أو الهيدف.
العمر الزمني.

أوضحت تحدي دراسات الرنين المغناطيسي الوظيفي (FMRI) أن نمط النشاط الدماغي، بين الأطفال والكبار كان متشابهاً جدًا. ولكن أظهر الكبار نشاطًا كبيرًا في الشق الجداري الداخلي الأيسر، مقارنة بالأطفال، وهذه النتائج تنشر التعريج النشاط من السيادة في القسم الجداري الأيمن عند الأطفال إلى نمط النشاط ثنائي الجانب عند الكبار. بالإضافة لذلك أظهر الكبار قلة في النشاط الحادث في الفلل في الجداري الخلفي، والطلال (تليفيف مخي ضيق) (Kucian, Von Aster, Loenneker, Dietrich, Mast & Martin, 2007).

الدراسة إلى نتائج مشابهة (Booth et al., 2000, وهى: أن الأطفال والكبار الأصحاء أظهروا نشاطًا مشابهاً في مناطق الدماغ و لكن هناك اختلاف في توزيع النشاط عبر الشبكات العصبية. فأظهر الكبار نشاط أكبر في المناطق الجبهية الوسطى والجدارية العليا، وقلة في نشاط اللفيف فوق الهمامي في اللفيف Supramarginal Gyrus، في حين أظهر الأطفال نشاط كبيرًا في القفص الجداري الخلفي في النصف الأيمن من الدماغ و لكن نشاط القفص الجداري العلوي كان أكثر جاذبية في النصف الأيسر من الدماغ (Booth et al., 1999). كما ظهر النشاط عند الكبار أثناء الأداء على مهام التدوير العقلي في النقصون الجدارية ومناطق الجبهة والفص القِفْوِي (Alivisatos and Petrides, 1997; Carpenter et al., 1999; Harris et al., 2000; Jordan et al., 2002; Kosslyn et al., 1998; Richter et al., 2000,1997; Tagaris et al., 1996; Thomsen et al., 2000; Vingerhoets et al., 2001). كما أشار (Booth et al., 1999, 2001; Weiss et al., 2003).

عند وجود نشاط جانبي لصالح الذكور، وفي نفس الوقت كشفت دراسات

فقد أشارت إحداهما أن الذكور أكثر نشاطاً من الإناث في المناطق الجدارية البسيستي والمناطق الصدغي الخلفي، في حين أن البنات والأولاد لم يوجد بينهم اختلاف في نشاط هذه المناطق أثناء مهمة التدريب العقلي ثنائي الأبعاد، بالإضافة إلى ذلك؛ لوحظ أن زمن الرجع أسرع عند الذكور مقارنة بالإناث، بينما لا يوجد فروق بين الأولاد والبنات (Roberts & Bell, 2000).

في حين أشارت الأخرى (Roberts & Bell, 2002)، إلى وجود فروق بين الجنسين ليس فقط في الكبار، ولكن في الأطفال أيضاً. فلقد أظهرت النتائج أن نشاط القسم الجداري الأولي عند الذكور والأولاد أكبر من الإناث وياً في مهمة التدريب العقلي ثنائي الأبعاد، وفي حالة استخدام مثيرات ثنائية الأبعاد مختلفة لم يتشابه الذكور مع الإناث في زيادة نشاط القسم الصدغي الخلفي الأولي، في حين لم توجد أي اختلافات بين الأولاد والبنات. وفي حالة مهمة التدريب العقلي ثنائية الأبعاد؛ أظهر كل المشاركين نشاطاً كبيراً في المناطق الجدارية اليمنى مقارنة بالباسي، ولم توجد فروق نوعية بين الكبار ولابين الأطفال؛ كما أظهرت دراسات التصوير العصبي على الأطفال دليل مفاده أن القسم الجداري يلعب دوراً مهماً في التمكين والفرق الجنسية التي تم اكتشافها في أنماط النشاط الدماغي أثناء التدريب العقلي.

كما أوضح (Van Impe et al., 2013, من خلال نتائج التصوير بالرنين المغناطيسي الوظيفي (FMRI) لمناطق الدماغ.

العدد الرابع والعشرون والثلاثون والعشرون - ٤٠٧

أغسطس - ديسمبر ٢٠١٢
أن أداء مجموعة من المشاركين الكبار مقارنة بالمشاركين الشباب على مهام تدريب عقلي تتضمن أشكالًا مجزرة. أظهر زيادة في مستوى الأكسجين في الدم في كل من الشبكات العصبية الجبهية الجدارية Fronto-parietal، وكذلك مناطق نشاط أخرى ارتبطت بمستويات الكبار أكثر من الشباب. كما أظهرت نتائج دراسة (2012) تباين التخيل البصري يقف وراء الاختلاف الذي ظهر في نشاط التلفيف الجبهي العلوي Insula، و التلفيف المصدقغي الأوسط Superior Frontal Gyrus، و المخيخ Thalamus، و المهمـاد Middle Temporal Gyrus عند المشاركين الصغار و كذلك زيادة النشاط المرتبطة بالعمر Cerebellum. في القشرة الجبهية و الصدغي و القنوية عند الكبار Frontal، Temporal و Occipital Cortices.

- زمن عرض المهمة.

وفيماضي، أثبت مدخل عصبي لتوضيح المنطاق الذي ارتبط بالآداء على اختبارات التدريب العقلي المحدودة الزمن والغير محدودة.

تحتقت العديد من الدراسات من أثر تحديد الزمن على الحدث المرتبط بالفعل (Falkenstein, Hohsbein & Hoorman, 1994; Hohsbein, Falkenstein & Hoorman, 1995). كما أوضحها إحدى الدراسات أثر تحديد زمن المعالجة على النشاط القشري أثناء معالجة "مهمة التخيل البصري المكاني" Visuo-Spatial Imagery task بسرعة و دقة قدر الإمكان، "محدد زمن" Time Restricted. أُلِهجت زيادة Increased Negative Slow سلبية في "سرعة رتم النشاط القشري البطيء" Amplitudes Cortical Potential في المناطق الجبهية والجدارية؛ وتفاعلت بشكل كبير مع القدرة على المهمة المحدودة. ولكن عند تسجيل
النشاط القسري من المناطق الجبهية والجدارية في حالة " زمن المعالجة الغير محدد " Processing Time Unrestricted، وجدت فروق بين المشاركين مزدوجة ومنخفضة القدرة المكانية، ولم تلاحظ هذه الفروق بين مجموعات القدرة عندما طلب منهم أن يستجيبوا بسرعة ودقة قدر الإمكان " زمن المعالجة المحدد "، وهذه النتائج تفترض أن زمن المعالجة المحدد يؤثر بشكل كبير في كمية ونوعية النشاط الدماغي الحاد أثناء المعالجة المعرفية (Lamm, Bauer, Vitouch, Durec, Gronister & Gstadtner, 2001). أشارت إحدى دراسات رسم المخ (EEG) التي هدفت إلى دراسة أثر "ضغط الوقت " على نشاط المناطق الدماغية أثناء الأداء على مهام بصرية حركية Visuo Motor Tasks، فظهرت نتائج التصوير الدماغي أن المناطق المتميزة من النشاط ارتبطت بضغط الوقت وتمثلت في زيادة نشاط تم ثيما Theta في خط المنتصف في كل من المناطق الجبهية، المركزية والجدارية، وأيضًا المناطق الجبهية اليمنى (Slobounov, Fukada, Simon, Rearich & Ray, 2000)

7- الفرق بين الموهوبين وغير الموهوبين أثناء أداء التدوير العقلي، بالإضافة إلى، ما أظهرته النتائج السيكيمترية حول أثر الموهبة على أداء التدوير العقلي بين الموهوبين وغير الموهوبين. سوف يتم إتباع مدخل عصبي لإظهار أثر عامل الموهبة على الكفاءة العصبية للمناطق الدماغية المختلفة أثناء الأداء على مهام التدوير العقلي بين الموهوبين وغير الموهوبين. وفقًا لشار (O'Boyle et al. 2005)، أن المعرفة المراهقين الموهوبين رياضيًا والموهوبين في القدرة الرياضية قاموا بتدوير الأشكال الثلاثية الأبعاد. فظهر الموهوبين شبكات عصبية نوعية مختلفة أكثر من المتوسطين، وتستند هذه الشبكات نشاط ثنائي الجانب في الفصوص الجدارية (PL) والقرة الجبهية (FC) بالإضافة إلى نشاط مرتفع في
الつつيف الحزامي الأمامي ، Anterior Cingulate Gyrus كما ارتبط أيضاً Inferior Parietal Lobule النشاط الحادث في الفصيبي الجداري الخلفي (Hoppe et al., 2012) بالآباء على مهام التدوير العقلية لدى الموهوبين ، كما دعمت إحدى الدراسات الحديثة أيضاً ارتباط المناطق الجبهية بالآداء على مهام التدوير العقلية والتي تمثلت في "نموذج شيرد-ومتزلر " (Shepard-Metzler Paradigm, Prescott, Gavrilescu, 2010). الموهوبين رياضياً مقارنة بغير الموهوبين ، ومن ناحية أخرى ، هدفت إحدى Cunnington, O' Boyle & Egan, 2010). دراسات الرنين المغناطيسي الوظيفي (FMRI) إلى التحقق من الركائز العصبية المرتبطة بالذاكرة العامة المكانية ، لدى مجموعة من الذكور المراهقين الموهوبين رياضياً مقابل أفراد المجموعة الضابطة وهم "متوسطون رياضياً" . فأظهرت النتائج أثناء أداء المهام أن كلاً المجموعتين الموهوبين والموسطين أظهروا نشاطاً ملحوظاً في الشبكات الجبهية الجدارية ، ولكن لوحظ أن الموهوبين أظهروا نشاطاً ثانياً الجانب في مناطق كثيرة وبالأخير في النصف الأيمن من الدماغ . وبالإضافة لذلك، أظهر الموهوبين أيضاً مقارنة بأفراد المجموعة الضابطة زيادة في النشاط الحادث في منطقة الـ Temporal Lobe(MTL) والفص الصدغي الأوسط Precuneus ، والفص الباري الخلفي الأمامي Right Anterior Cingulate ، والつつيف الحزامي الأمامي ، Inferior Parietal Lobe (Desco, Navas-Sánchez, Sanchez-González, Reig, Robles, Franco, Guzmán-De- Villoria, García-Barreno & Arango, 2011).
لموهوبين يختلف عن التنظيم الدماغي (Brain Organization) لغير الموهوبين، وفقًا لما أشارت إليه الدراسات التي استخدمت أثناء "Alexander, O'Boyle & Benbow, 1996; Dehaene, Piazza, Pinel & Cohen, 2003; Dehaene, Spelke, Pinel, Stanescu & Tsivkin, 1999; O'Boyle, Cunnington, Silk, Vaughan, Jackson, Syngeniotis, & Egan, 2005; Prescott, Gavrilescu, Cunnington, O'Boyle, & Egan, 2010; Singh & O'Boyle, 2004). إن وجود زيادة في تمثيل الجلوكوز في الفص الصدغي الأيمن أثناء الأداء على اختبار الاستدلال الرياضي (Mathematical Reasoning Test) لدى الطلاب الموهوبين مقارنة بغير الموهوبين، وذلك في ضوء توضيح أهمية العلاقة بين القدرات البصرية المكانية في النصف الأيمن من الدماغ والقدرة الرياضية (Hair & Benbow, 1995).
المراجع

1- رجاء محمود أبو علام، عاصم عبد احمد كامل، محمد عاطف عطيفي (2014). التصور العقلي من منظور علم النفس التربوي، مجلة العلوم التربوية، (3)، 473-474.

2- شاديه أحمد الشرح، ولد حامد الشحور (2015). تطور القدرة على التدريس العقلي لدى عينة من الطلبة الأردنيين. دراسات العلوم التربوية، 2(2)، 243-244.

of three dimensional objects: An MEG study. Journal of Neuroimage, 37(3), 956-965. doi:10.1016/j.neuroimage.2007.06.001

65-Lamm, C., Bauer, H., Vitouch, O., Durec, S., Gronister, R., & Gstättner, R. (2001). Restriction of task processing time affects...
cortical activity during processing of a cognitive task: an event-related slow cortical potential study. Cognitive Brain Research, 10(3), 275-282. doi:10.1016/S0926-6410(00)00048-3

RetrievedFrom
